

Observations of the Axisymmetric Tropical Cyclone Diurnal Pulse using Synthetic Observations from the TROPICS NASA Earth Venture Mission

Erika L. Duran, University of Alabama in Huntsville/NASA Short-term Prediction and Research Transition (SPoRT) Center

Emily Berndt, NASA Marshall Space Flight Center/NASA SPoRT National Weather Association Annual Meeting, Huntsville, AL Tuesday, September 10, 2019

Introduction

- Observations reveal a coherent tropical cyclone (TC) diurnal cycle (TCDC) that manifests throughout the TC environment.
 - Daily oscillations are seen in cloud-top temperature (e.g., Dunion et al. 2014) and precipitation (e.g., Leppert and Cecil 2016).
 - Also linked to TC convection via outward propagating squall line features (Dunion et al. 2014)
- Current polar-orbiting observing systems and the passive microwave constellation lack the ability to fully resolve the TCDC
 - Even with the increased temporal resolution of the GOES-R series, high viewing angles and gaps in geostationary field of views can cause issues
 - Makes observational analysis challenging

07:15 LT 18:15 LT Infrared Brightness Temperature

07:15 LT 18:15 LT Dunion et al. 2014

TROPICS Mission Overview

Earth Venture Instrument to measure TC structure

Design

- 6 CubeSats with 12-channel passive microwave radiometer (MicroMAS-2) measuring frequencies between 91 and 205 GHz
- Provide rapid-refresh observations of temperature and moisture soundings and precipitation over the tropics with <60 minute revisit time
- Meet requirements for temporal refresh needed to study storm evolution with ability to see into clouds
- Rapid-update observations provide the opportunity to observe the full evolution of the TCDC
 - Can sample multiple radial locations from the storm center at different times of the day to track TCDC evolution

TROPICS = Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats https://tropics.ll.mit.edu

TROPICS Mission

- Goal: Since TROPICS is not anticipated until early 2021, use proxy data to test the ability of TROPICS to resolve TCDC prior to launch
 - Utilize atmospheric soundings to analyze the thermodynamic environment of the TCDC
- Current TROPICS proxy data only includes brightness temperatures (i.e., L1 products)
 - Sounding analysis requires synthetic L2 products

Image courtesy of Frank Lafontaine, Jacobs ESSCA/NASA SPoRT

Methodology

- Create synthetic L2 TROPICS observations using 2D, idealized simulation of Navarro and Hakim (2016)
 - Steady-state TC produced in Cloud Model 1 (CM1) version 15 (Bryan and Rotunno 2009)
 - Axisymmetric simulation with no external influences (e.g., land, shear, etc.)
 - 300 days of a mature TC
- Caveat: output is <u>hourly</u>, so actual TROPICS resolution will be ~40 min

Navarro and Hakim (2016)

Synthetic L2b Data Products

- Simulate satellite overpasses using a 30-day orbital simulation of the baseline mission
 - Repeat every 30 days to match duration of model output
 - Spatially blur CM1 spatial resolution to estimates from TROPICS

L2 Product	Resolution	Uncertainty
Vertical temperature profile (K)	50 km scan-averaged	2 K r.m.s
Vertical moisture profile (g g ⁻¹)	25 km scan-averaged	25%
Instantaneous Rain Rate (mm h ⁻¹)	2.5 x 2.5 degrees	25%
TC intensity: minimum sea-level pressure (hPa)		10 hPa r.m.s
TC intensity: maximum sustained wind (m s ⁻¹)		6 m s ⁻¹ r.m.s

Blackwell et al. 2018

TROPICS Orbital Simulation

TROPICS Orbital Simulation

Model vs. Synthetic Moisture Profile

TROPICS simulates overall shape of profile

Model vs. Synthetic Data Composite Profiles

Composites of TROPICS profiles simulate both shape and magnitude

TCDC Anomalies at r = 50 km and 00 LT

TCDC Anomalies at r = 50 km and 00 LT

Larger
composites of
TROPICS
profiles provide
better estimates
in magnitude

TCDC Anomalies at r = 50 km and 00 LT

Lower levels more difficult to observe

Model TCDC Moisture Evolution

Moistening between ~2-8 km throughout the day; drying from 5-10 km overnight

TROPICS TCDC Moisture Evolution

TROPICS simulates overall sign and shape of profile

Summary (1/2)

- NASA TROPICS mission provides a unique opportunity to observe the full evolution of the TCDC
- Using synthetic L2 data products, TROPICS shows promise in resolving anomalies that arise from TCDC
 - motivates continued analysis of the TCDC using TROPICS, as well as other applications of the mission

More Information (2/2)

- As an official early adopter of TROPICS, NASA SPoRT is currently assessing the capabilities and applications of the upcoming TROPICS mission
 - <u>https://tropics.ll.mit.edu</u>

- Contact:
 - Erika: erika.l.duran@nasa.gov (Twitter: ErikaL_Navarro)
 - Emily: emily.b.berndt@nasa.gov (Deputy Applications Lead)

Please contact us with questions or for more information!

Thank you!

TROPICS Mission Overview

Science objectives

- Relate precipitation structure evolution, including diurnal cycle, to the evolution of the upper-level warm core and associated intensity changes
- Relate the occurrence of intense precipitation cores (convective bursts) to storm intensity evolution
- Relate retrieved environmental moisture measurements to coincident measures of storm structure (including size) and intensity
- Assimilate microwave observations in mesoscale and global numerical weather prediction models to assess impacts on storm track and intensity

TROPICS = Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats

TC Diurnal Cycle Anomalies at r = 218 km and 00 LT

TC Diurnal Cycle Anomalies at r = 218 km and 00 LT

